Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116693, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701566

RESUMO

Sevoflurane postconditioning has been shown to provide neuroprotection against cerebral hypoxia-ischemia injury, but the mechanisms remain elusive. Microtubule-associated protein 2 (MAP2) is implicated in early neuronal hypoxia-ischemia injury. This study aimed to investigate whether the neuroprotective effects of sevoflurane postconditioning are related to the Akt/GSK-3ß pathway and its downstream target MAP2 in zebrafish hypoxia/reoxygenation (H/R) model. Sevoflurane postconditioning or GSK-3ß inhibitor TDZD-8 were used to treat H/R zebrafish. The cerebral infarction, neuronal apoptosis, and mitochondrial changes were evaluated using TTC staining, TUNEL staining, and transmission electron microscopy, respectively. The distribution of MAP2 in the brain was determined by immunofluorescence imaging. The levels of Akt, p-Akt, GSK-3ß, p-GSK-3ß, and MAP2 proteins were evaluated by Western blotting. The neurobehavioral recovery of zebrafish was assessed based on optokinetic response behavior. Our results indicated that sevoflurane postconditioning and TDZD-8 significantly reduced the cerebral infarction area, suppressed cell apoptosis, and improved mitochondrial integrity in zebrafish subjected to H/R. Furthermore, sevoflurane postconditioning and TDZD-8 elevated the ratios of p-Akt/Akt and p-GSK-3ß/GSK-3ß. However, the neuroprotective effect of sevoflurane postconditioning was effectively abolished upon suppression of MAP2 expression. In conclusion, sevoflurane postconditioning ameliorated cerebral H/R injury and facilitated the restoration of neurobehavioral function through the activation of Akt/GSK-3ß pathway and promotion of MAP2 expression.

2.
Brain Res Bull ; 204: 110809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37931809

RESUMO

BACKGROUND: Sevoflurane, a commonly administered inhaled anesthetic, is found to induce synaptic and mitochondrial damage in neonatal mice. Mitochondrial membrane potential (MMP) changes, mediated by Cyclophilin D (CypD), are implicated in mitochondrial function. Melatonin, known for its significant neuroprotective properties, was investigated in this study to elucidate its mechanisms in mitigating the cognitive impairment caused by sevoflurane. METHODS: The mice were categorized into several groups, including the control, vehicle, sevoflurane, vehicle plus sevoflurane, and melatonin plus sevoflurane groups. From postnatal day 6 to day 8, the mice were administered inhaled sevoflurane or intraperitoneal melatonin. MMP and reactive oxygen species (ROS) were measured using appropriate detection kits. The protein expression levels of PSD95, Synapsin Ⅰ, and CypD in the hippocampus were analyzed through western blotting in acute and prolonged terms. Immunofluorescence staining was used to assess the co-localizations of PSD95 or CypD in parvalbumin (PV) neurons. Cognitive ability was evaluated through novel object recognition, social interaction experiment, and the Morris water maze. RESULTS: The findings revealed that repeated exposure to sevoflurane in neonatal mice resulted in cognitive and synaptic impairment. Furthermore, melatonin administration suppressed the ROS and CypD protein expression, enhanced the MMP in mitochondria and synaptic protein expression in PV neurons, and ameliorated cognitive deficits. CONCLUSION: Melatonin alleviated sevoflurane-induced cognitive deficits by suppressing CypD and promoting synaptic development in hippocampal PV neurons. These results provide valuable insights into a promising therapeutic approach for preventing neurotoxic injuries caused by general anesthetics.


Assuntos
Anestésicos Inalatórios , Disfunção Cognitiva , Melatonina , Éteres Metílicos , Animais , Camundongos , Sevoflurano/farmacologia , Animais Recém-Nascidos , Peptidil-Prolil Isomerase F/metabolismo , Parvalbuminas/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Éteres Metílicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...